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Technology 
 

Abstract 
Dermatologists base the diagnosis of skin disease on the visual assessment of the 

skin. This fact shows that correct diagnosis is highly dependent on the observer’s 

experience and on his or her visual perception. Moreover, the human vision system lacks 

accuracy, reproducibility, and quantification in the way it gathers information from an 

image. So, there is a great need for computer-aided diagnosis.  

We propose a content-based image retrieval (CBIR) system to aid in the diagnosis 

of skin disease. First, after examining the skin images, pre-processing will be performed. 

Second, we examine the visual features for skin disease classified in the database and 

select color, texture and shape for characterization of a certain skin disease. Third, feature 

extraction techniques for each visual feature are investigated respectively. Fourth, 

similarity measures based on the extracted features will be discussed. Last, after 

discussing single feature performance, a distance metric combination scheme will be 

explored.   

The experimental data set is divided into two parts: developmental data set used 

as an image library and an unlabeled independent test data set. Two sets of experiments 

are performed: the input image of the skin image retrieval algorithm is either from 

developmental data set or independent test data set.  

The results are top five candidates of the input query image, that is, five labeled 

images from image library. Results are laid out separately for developmental data set and 
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independent test data set. Two evaluation systems, both the standard precision vs. recall 

method, and the self-developed scoring method are carried out. The evaluation results 

obtained by both methods are given for each class of disease. 

Among all visual features, we found the color feature played a dominating role in 

distinguishing different types of skin disease. Among all classes of images, the class with 

best feature consistency gained the best retrieval accuracy based on the evaluation result. 

For future research we recommend further work in image collection protocol, color 

balancing, combining the feature metrics, improving texture characterization and 

incorporating semantic assistance in the retrieved process.  
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1. Introduction 

Skin disease is one of the top 15 groups of medical conditions for which 

prevalence and health care spending increased the most between 1987 and 2000, with 

approximately 1 of 3 people in the United States with a skin disease at any given time. 

Even so, a national data profile on skin disease has not been conducted since the late 

1970s. A study by Bikers, et al, 2004, closed the gap by estimating the prevalence, 

economic burden, and impact on quality of life for 22 leading categories of skin disease. 

The estimated annual cost of skin disease in 2004 was $39.3 billion, including $29.1 

dollars in direct medical costs (costs of health services and products) and $10.2 billion in 

lost productivity costs (defined as costs related to consumption of medical care, costs 

associated with impaired ability to work, and lost future earning potential because of 

premature death). Based on a methodology of willingness to pay for symptom relief, the 

additional economic burden of skin disease on quality of life amounted to an estimated 

$56.2 billion. Including the economic burden on quality of life, the total economic burden 

of skin disease to the US public in 2004 was approximately $96 billion.  

Skin diseases are well known to be a large family. The identification of a certain 

skin disease is a complex and demanding task for dermatologist. Thus, it is important to 

develop efficient schemes for clinical diagnosis and to support the dermatologists with 

computer-aided diagnosis systems. Also, a computer aided system can reduce the work 

load of the dermatologists, especially when the image database is immense (Schmid-

Saugeon et al, 2003; Takemae et al, 2000; Casitello et al, 2004). 

However, most contemporary work on computer aided analysis skin disease 

focuses on the detection of malignant melanoma (Fiorini et al, 2004; Ganster et al, 2001; 
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Maglogiannis et al, 2005). Thus, the features they used are very limited. The goal of our 

work is to build a retrieval algorithm for the more general diagnosis of various types of 

skin diseases. Our database is provided by a local company (Logical Images, 2009), and 

contains images from eight categories. It can be very complex to define the features that 

can best distinguish between classes and yet be consistent within the same class. 

There are mainly two kinds of methods for the application of a computer assistant. 

One is text query. A universally accepted and comprehensive dermatological terminology 

is created, and then example images are located and viewed using dermatological 

diagnostic concepts using a partial or complete word search. But the use of only 

descriptive annotation is too coarse and it is easy to make different types of disease fall 

into same category. (Dermatology Lexicon Project @ University of Rochester, 2005)  

The other method is to use visual features derived from color images of the 

diseased skin. The ability to perform reliable and consistent clinical research in 

dermatology hinges not only on the ability to accurately describe and codify diagnostic 

information, but also complex visual data. Visual patterns and images are at the core of 

dermatology education, research and practice. As we move into the next millennium, 

advances in digital imaging techniques and processing will deliver new and powerful 

methods to measure outcomes in clinical research. These new imaging and computing 

technologies will also facilitate remote diagnosis through telemedicine. Digital 

technology is also creating new opportunities to enhance medical education and care 

through digital image databases, computerized medical records and knowledge sources. 

Visual features are broadly used in melanoma research, skin classification and 

segmentation. But there is a lack of tools using content-based skin image retrieval. So we 
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developed a content-based image query system for the assignment of skin disease to eight 

categories. Our approach uses five steps: First, after examining the whole database, visual 

features are identified as indicators to discriminate of each image class. Second, features 

are extracted by image processing according to the definition in the expression of 

mathematical formulae. Third, distance metrics are calculated for a similarity measure of 

each feature. Four, a distance metric combination is applied taking advantage of the 

complementary nature of the distance metrics. Lastly, using the distance metrics, the top 

five similar images from the image library are retrieved.  

The following summarizes the rest of the document. Chapter 2 lists the objectives 

of this research. Chapter 3 investigates the background of this research, including general 

content based image retrieval, medical image retrieval and skin disease identification. 

Chapter 4 introduces the dataset of this research and illustrates the eight kinds of skin 

diseases involved. Chapter 5 elaborates on the methodology of skin image retrieval: 

feature identification, feature extraction, similarity measure, distance metric combination 

and indexing. Chapter 6 provides the results and their evaluation. Chapter 7 presents the 

summary and conclusion with a discussion of future work to be done. 
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2. Objectives  

The overall objective of this project is to assist dermatologists with a computer-

aided recognition technique to achieve skin disease diagnosis with higher accuracy. The 

desired outcome is to develop a dermatological image query system to provide doctors 

with the best candidates of the pending image among the existing comprehensive image 

database.  

The intermediate objectives of this work are the following: 

• Elucidate the background of this thesis and find the relative literature in the field. 

Lay out the necessary background for a reader to understand this thesis. In order 

to proceed in this research, certain reflections on previous work should be 

investigated, such as general image query systems and medical image retrieval 

methods, especially as applied to the field of skin image query techniques. Also, 

related fields, such as skin disease identification, were researched. 

• Determine the visual features to be used for dermatological image query. 

Image query systems can be based on visual features such as color, texture, and 

shape. Color plays the most significant role in dermatological images. In 

homogenous skin patterns, texture demonstrates the character of the skin. Some 

dermatological conditions have a certain consistent geometric shape that can be 

easily distinguished.  

• Determine the feature extraction method for each visual feature. 

For color features, determine which color space is suitable for the skin image 

database. Texture information can be obtained by investigating some operators 

and descriptors that can qualitatively demonstrate the patterns of the skin. To 
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extract a shape description, the method of object recognition and contour 

extraction should be investigated. 

• Determine distance metrics for feature similarity measure. 

For each visual feature, different distance metrics should be selected according to 

the property of the feature space. 

• Determine distance metric combination method. 

If distance metrics for each feature are not of the same type and cannot be 

integrated at the level of similarity measure, the combination of different distance 

metrics should be considered. 

• Develop a skin image query algorithm and provide results.  

After pre-processing (if necessary), perform the feature extraction for both the test 

image and library images. Then, compute distance metrics for each feature 

between the test image and each library image. After distance metric combination, 

select top five library images most similar to the test image as the retrieval results. 

• Evaluate the querying accuracy for each class. 

Perform the standard precision vs. recall evaluation of the retrieval system for 

each image category. Also, build a statistical scoring algorithm based on the five 

result images to count the accuracy of this query system for each image category. 

 This project will develop a skin image retrieval system that will produce five best 

candidates most similar to the query image from the image library, thus largely narrowing 

down the search and comparison work of the dermatologists. The results of two 

evaluation methods will be given for each image category. 



www.manaraa.com

7 
 

3. Background and previous work 

Dermatology can be described as the branch of medicine primarily concerned 

with skin and its diseases. It is one of the most difficult areas in medicine. It demands 

detailed knowledge and experience. Fortunately, dermatologists are now aided by a 

number of modern inventions which makes their work easier and produces better results 

for patients (Antkowiak, 2006).  

Computer assisted diagnosis can help doctors in remote diagnosis, or interaction 

with large image database. However, in most cases, doctors make the diagnosis by their 

knowledge and rich experience using perceptual judgment, and lab tests or radiographs.  

Half of all diseases exhibit visual or skin characteristics. These perceptual skills 

are critical in a health care system with a 15 percent rate of misdiagnosis (New York 

Times, 2009). Thus, computer-aided image processing could play an important role in 

assisting perceptual judgment of a given case. There are lots of ways that computers can 

help in diagnosis, such as pre-processing of the medical image, justification of a certain 

disease, alignment of different sources of image, and classification of several different 

diseases. In our case, the computer will produce a group of candidates generated by a 

retrieval system from a large image database containing various kinds of skin disease. 

In this chapter, we will first review the basic method of general image retrieval, 

and then narrow down to medical image retrieval. At last, we will elaborate in the field of 

computer-aided skin disease diagnosis. 
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3.1 General image query methods 

 This section will introduce algorithms for general content-based image retrieval.  

Content-based image retrieval (CBIR), also known as query by image content (QBIC) is 

the application of computer vision to the image retrieval problem; that is, the problem of 

searching for images in large databases (Niblack et al, 1993). The general structure of 

CBIR system is illustrated in Fig. 3-1. 

 

 

 

 

 

 

 

Figure 3-1 Principal components of all content-based image retrieval 
systems(Muller et al, 2004) 

The following will introduce each component of CBIR techniques respectively 

including the software systems as well as the querying techniques. 

3.1.1. Content used for image description 

This sub-section lists some common features of image content (Vasconcelos and 

Vasconcelos, 2004; Hoiem et al, 2004; Veltkam and Tanase, 2002). 

Color: Since color contains significant information of an image that can be used for 

discrimination from other images and due to its independence of image scaling 

and orientation, color query methods are among the most widely used techniques. 

Storage and 
access methods 
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Commonly used color features are: eigen images, global/subimage histograms, 

correlation histograms, color moments, color coherence vectors, region 

histograms, and dominant colors. 

Texture: Defined as a function of the spatial variation in pixel intensities, texture is the 

most important visual cue in identifying a certain texture pattern. The most 

commonly used texture features are: wavelets, Gabor filters, Fourier descriptors, 

co-occurrence matrices, atomic texture features, random field decompositions, 

local binary patterns, and edge statistics. 

Shape: This is defined in our work as the geometric information of a particular region 

that is being investigated. But shape often depends on segmentation, which is 

difficult to perform automatically. So, shape detection usually involves human 

interaction. The common shape features are: edge direction histograms, template 

matching, Fourier descriptors, curvature scale space, bounding box/ellipses, and 

elementary description techniques. 

3.1.2 Similarity measures 

The similarity measure between a query image and data set must be adaptive to 

the feature metrics extracted above. For example, histogram intersection often serves as 

the similarity measure for color histogram extraction, which is further discussed in 

Appendix A. Hausdorff distance is a similarity metric for shape contours.  

Also, mutual information (Viola, 1997; Pluim et al, 2003; Hao et al, 2000; Chua 

and Tischer, 2003; Alvarez et al, 2005) is a measure of the degree of dependence between 

corresponding pixels in the images being compared.  It makes uses of both spatial 

information and feature characteristics. It is invariant with position, rotation and scaling, 
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avoiding the difficulties in image segmentation.  It has outstanding performance in 

registration between multi-modal images. Although mutual information is widely applied 

as a criterion in image registration, it can also be used as a similarity measure between 

image pairs, while simple spatial correlation methods fail to demonstrate the maximum 

likelihood. Thus, mutual information can serve as similarity measure of those content 

features described above. 

3.1.3 Indexing techniques 

To efficiently search from hundreds of thousands of images to a few that the user 

can quickly browse, images and their associated features need to be properly indexed. 

There are several multidimensional indexing techniques for capturing the low-level 

features like feature based or distance based techniques, each of which can be further 

classified as a data-partitioned or space-partitioned based algorithm. Feature based 

indexing techniques project features of an image as a vector in a feature space and then 

indexes the space. The basic feature based index structures are R-tree (data partitioning 

based indexing structure), KDB-tree (space partitioning based indexing structure), and 

Hybrid tree (combine these two structures together) (Chatterjee and Chen, 2006; Liu et 

al, 1998). 

Distance based indexing structures are built based on the distances or similarities 

between two data objects. 

3.1.4 Querying techniques 

 Query by example: use an example image to search the database, and the resulting 

images should all share common elements with the provided example. The example 

image may be supplied by the user or chosen from a random set. The example can also be 
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a sketch drawn by the user. This query technique avoids difficulties when employing 

words to describe the image 

Query by semantic text: user makes a request by a phrase to describe the image 

needed; usually those phrases are generally regarded as the high-level features, compared 

to the low-level features such as texture, color, and shape. However, the accuracy of 

identifying high-level features often relies on the success of extracting low-level features.  

3.1.5 Software systems 

 There are dozens of CBIR systems; for space limitation, we just list some major 

systems in Tables 3-1, 3-2, and 3-3.  

Table 3-1 Commercial CBIR Systems 

System name Description  
IBM:QBIC Query large on-line image databases using the images’ content as 

basis of queries (Niblack et al, 1993) 
Virage Rich media management software and intelligent video analytics 

(Virage, 2009) 
Corbis Text-base image retrieval system for photographers (Corbis, 2009) 
 

Table 3-2 Free and Open Source of CBIR 

System name Description  
imgSeek Open source photo collection manager and viewer with content-based 

search and many other features (ImgSeek, 2009) 
GIFT The GNU Image Finding Tool : an open source query by example system 

(GNU, 2005) 
 

Table 3-3 Academic CBIR System 

System name Description  
VisualSEEk Uses color and spatial layout, with sketch tool (Smith and Chang, 1996) 
WebSEEk Utilizes text and visual information; relevance feedback (Webseek, 2009) 
MetaSEEk Content-based meta-search engine for finding images on the Web 

(Benitez, 1998) 
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3.2 Medical image retrieval 

 The following sub-sections will explore how image retrieval methods can be 

applied in the medical field. 

 Content-based Image Retrieval (CBIR) from medical image databases does not 

aim to replace the physician by predicting the disease of a particular case but to assist the 

doctor in diagnosis. The visual characteristics of a disease carry diagnostic information. 

In many cases, visual similarity between different medical images indicates the 

correspondence to the same disease category. By consulting the output of a CBIR system, 

the physician can gain more confidence in his/her decision or even consider other 

possibilities (Dreisetl et al, 2001; Park et al, 2007). Fig.3-2 illustrates how a medical 

image retrieval system works. 

 

Figure 3-2  Medical image retrieval system (Park et al, 2007) 
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3.2.1 Image types used for content-based image retrieval 

There are a variety of medical departments where the use of content-based access 

methods has been implemented or proposed. Most applications are centered on images 

produced in radiology departments, but some other departments also employ CBIR 

method. Table 3-4 list the various image types and systems that are using these images. 

Table 3-4 Image Types and the Applied Systems 

Images used Name of the systems 
HRCTs of the lung ASSERT 
Functional PET FICBDS 
Spine X-rays CBIR2, MIRS 
Pathologic images IDEM, I-Browse, PathFinder, PathMaster 
CTs of the head MIMS 
Mammography APKS 
Images from biology BioImage, BIRN 
Dermatology  MELDOQ1

Breast cancer biopsies 
 

BASS 
Varied images I2C, IRMA, KMed, COBRA, MedGIFT, ImageEgnie 

 

3.2.2 Features selected for medical images  

We consider two kinds of features used in medical image research: visual features 

and textual features. 

3.2.2.1 Visual features: (Muller et al, 2004) 

a) Color: If available, color has been a most effective feature. While most of the 

images are in RGB color space, many indexing and querying techniques do not 

employ this space due to the poor correspondence to human color perception. 

Other spaces such as HSV, CIE and LUV are much better with respect to human 

                                                 
1 The MELDOQ system has been developed by an interdisciplinary team to improve the early recognition 
of malignant melanoma (Delventhal, 1998).    
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perception and more frequently used. However, most medical images are only 

grey scale so that the application of color information is limited. 

b) Texture: There are various ways to measure texture. Some of most common 

measures are wavelets and Gabor filters, since they perform better and correspond 

well to the properties of human visual cortex for edge detection. These texture 

measures try to capture the characteristics of the image with respect to changes in 

certain directions and the scale of the changes.  Other texture descriptors derive 

from co-occurrence matrices. 

c) Local and global features: For precise description, features can be used on a 

global level or on a local level. To define a local feature, one simple method is to 

use blocks of fixed size and location.  Usually, local feature selected contains 

more information about the image objects or underlying structures. 

d) Shape: Processes dealing with the geometric character of the image need to 

extract shape of the object by segmentation and contour extraction technology. 

Segmentation and contour extraction are interrelated, but fully automated 

algorithm for both is an unsolved research problem.  There are several common 

techniques: Sobel, Laplacian, LOG, and DOG descriptor to find the edges of 

object, deformable template (active contour) (McInerney and Terzopoulos, 1996) 

and statistical threshold segmentation. In the medical image area, professionals 

usually play a role in segmentation together with computer, because accuracy is 

more important than speed in medical situation. In most cases, doctors identify an 

area of interest, and then computer can find a more accurate contour. 
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3.2.2.2     Textual features 

For effective clinical decisions, one needs to use semantic or cognitive 

information from an image rather than those low-level features. Semantic features are 

defined according to certain image object properties, but still it is difficult to extract 

semantic information from primitive visual features. Most of the annotation combines 

visual features with text, which is most useful in medical applications because of good 

annotated atlases of medical images containing objective knowledge (Xu et al, 2004; 

Hammiche et al, 2004; Han et al, 2004). 

Textual information can be collected from patient records or studies. Some define 

a context-free grammar, a standardized vocabulary for image description. Also, some 

structured information containing a whole set of patient information can also provide 

some context information of the image. (Muller et al, 2004) 

3.2.3 Similarity measures used 

Similarity measures compute the corresponding feature distance between two 

images to be compared. One category of this is vector distance, such as Euclidean 

distance or Mahalanobis distance (Wikipedia, 2009). Another category is a probabilistic 

framework to measure the probability that an image is relevant, such as support vector 

machines. Other statistical approaches use Bayesian networks (Niedermayer, 1998) and 

hidden Markov Models (Hidden Markov Model, 2009).  For image retrieval, this is based 

on two principles: one, a feature frequently in an image describes this image well; two, a 

feature frequent in the collection is a weak indicator to distinguish images from each 

other (Iakovidis et al, 2006). 
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3.2.4 Indexing methods 

Since medical image retrieval is an interactive system, an efficient and quick 

access to the data is very important. To reduce the feature space, principal component 

analysis (PCA) and independent component analysis (ICA) are mentioned in Muller, 

2004. Other indexing techniques such as KD-tree and R-tree are also mentioned in 

Muller, 2004. 

3.3 Skin disease recognition 

 The following sub-sections will explore computer processing methods in the field 

of skin disease. Since malignant melanoma is a form of skin cancer that is on the rise in 

most parts of the world, computer assisted identification of malignant melanoma has 

become a topic of great interest in contemporary literature of this field (Holmstrom, 

2005). So we focus on this problem in our review. Also, other literature specified on skin 

classification and segmentation will also be investigated. 

3.3.1 Melanoma research 

In order to recognize melanoma more automatically, much research has been done 

in computer aided image analysis of melanoma. In this sub-section, we will first 

introduce the classical melanoma recognition strategy. Then, other methods to distinguish 

melanoma are mentioned. 

Most commonly images are collected by Epiluminescence microscopy (ELM). 

ELM has proven to be an important tool in the early recognition of malignant melanoma. 

This imaging technique reveals most of the pigmented structures by allowing the light to 

penetrate deeper into the skin, thus rendering the surface translucent and making 

subsurface structures visible.  
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First, we shall introduce the classical ABCD diagnosis system, ABCD represents 

the asymmetry, border structure, variegated color, and dermatoscopical structures and 

defines the basis for a diagnosis by a dermatologist. The computer aided melanoma 

diagonosis contains four steps: (Binder et al, 2000; Schmid-Saugeon et al, 2003; Castiello 

et al, 2004; Ercal et al, 1993; Fiorini et al, 2004; Holmstrom, 2005). 

a) Image Collection: Epiluminescence microscopy (ELM) has proven to be an 

important tool in the early recognition of malignant melanoma. This imaging 

technique reveals most of the pigmented structures by allowing the light to penetrate 

deeper into the skin, thus rendering the surface translucent and making subsurface 

structures visible.  

b) Segmentation: For skin lesion segmentation, mainly region-based segmentation 

methods are applied, and within this category a thresholding operation is most often 

used (Ganster et al, 2001; Fischer et al, 1996). There are also other kinds of 

segmentation method, like color segmentation developed by Schmidt and Fischer, 

1997. Combining the different methods resulted in further improvement of correctly 

identified tumor boundaries. 

c) Feature Calculation:  For asymmetry, different shape features were used. Some 

groups use the sharpness of the transition from the lesion interior to the skin, as 

descriptors of the structure and irregularity of the border. The descriptors of color are 

mainly statistical parameters calculated from different color channels (Ganster et al, 

2001; Fischer et al, 1996). Kreutz and Gehlen, 2001 employed a hybrid method that 

combines a statistical clustering of the color space and a hierarchical region growing 

method. 
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d) Feature Selection and Classification: a variety of statistical and machine learning 

approaches to classification tasks are currently available: k-nearest neighbors, logistic 

regression, artificial neural networks (Binder et al, 2006), decision trees,support 

vector machines, and mixture-of-experts architectures (Kreutz et al, 2001). 

There are other criteria to differentiate benign melanoma from malignant 

melanoma. 

 Green et al, 1994, proposed several features: means and standard deviations of 

values from red, green and blue planes within the lesion boundary; the means and 

standard deviation of the gradient at each boundary pixel in the RGB planes; area of 

lesion; and perimeter; fragment index which has a value of unity if a lesion is a perfect 

circle and smaller values if it is irregular; change in area when the color thresholds were 

reduced by 10%, as a broad indication of gradient of color change around the lesion 

boundary; and shape change. 

Round et al, 1998 and 2001, found that skin line patterning tends to be disrupted 

by malignant but not non-malignant skin lesions, which could be used as an aid to lesion 

differentiation. Skin pattern has been extracted from optical images by high-pass filtering 

and profiles of local line strength variation with the angle estimated using a new 

consistent high-value profiling technique. A measure based on the relationship between 

the classification results and an intensity-based segmentation was calculated, and this 

represented the disruption of the skin line patterning. 

Claridge, 1992 employed ‘bulkiness’ as a measure of the shape. Irregularity of the 

border is expressed by two fractal dimension measures, one for the 'structural' aspect of 

the shape and the other for the 'textural' aspect. 
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Handels et al, 1999 proposed several types of features for characterizing the 

structure of skin surface profiles: texture features based on co-occurrence matrices, 

Fourier features and fractal features. Then, a genetic algorithm was applied to determine 

suitable feature subsets for the recognition process. 

3.3.2 Skin disease classification 

Antkowiak, 2006 used Artificial Neural Networks (3 layers) and Support Vector 

Machines separately for classification of 7 types of skin diseases taken under visible 

light. The feature space was obtained by Fast Fourier Transformation from the spatial 

domain to frequency domain. 

A texture classification approach (Abdel Wahab el al, 2005) employed a back 

propagation neural network to classify texture features: gray level co-occurrence 

matrices, wavelet analysis, Law’s Texture energy measurements, gray level gradient 

distribution and statistical moments (mean, variance, kurtosis, skewness). These features 

were gathered into one feature vector and underwent feature reduction process using 

PCA. 

A color classifier approach (Cheng and Umbaugh, 2005) used 17 color features: 

binary features and histogram features in R, G, B bands. These features were classified 

by two classification models: Discriminant Analysis and Multi-layer Perceptron. 

Note that none of those methods used the combination of color feature, textural 

information and shape characteristics which forms the basis of our proposed method. 

3.3.3 Skin disease segmentation 

Color segmentation proposed by Umbaugh et al, 1989 was performed strictly on 

color information. The color space was transformed from rectangular RGB space to a two 
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dimensional spherical coordinates, and then a center split method was performed in this 

space. This algorithm was shown to be a useful aid in the identification of tumour border, 

ulcer, and other features of interest. Umbaugh et al, 1993 added another 3D Principal 

Component Transformed space and performed median split in the space for 

segmentation. Hance et al, 1996 explored several types of color segmentation methods: 

adaptive thresholding, fuzzy c-means, Spherical Coordinates Transform/center split, 

Principal Component Transform/median cut, split and merge and multi-resolution 

segmentation. 

Phung et al, 2005 examine three important issues of color pixel calssification 

approach to skin segmentation: color representation, color quantization and calssification 

algorithm, and found out skin segmentation based on color pixel classification is largely 

unaffected by the choice of the color space. 

Cell nucleus segmentation proposed by Tanaka et al, 2001, extracted nuclei 

regions which were surrounded by edges of certain strength, and under this restriction, 

segmentation of arbitrary shaped nuclear regions. Segmentation of arbitrary shaped 

nuclear regions and weakly stained nuclear region is made. A dynamic thresholding 

method with combining Laplacian histogram with Ostu’s method is used for 

segmentation. 

3.3.4 Skin disease retrieval by text 

Recently, the Dermatology Lexicon Project (University of Rocheter, 2005) has 

developed a system that can query a skin image by word search. Just enter the term into 

the entry window and a single diagnosis or list of diagnoses will be returned. The user 

can select the diagnosis and view its placement in a pathophysiology hierarchy. 
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3.3.5 Discussion on literature review 

To sum up the literature review, we can see there is a lack of references devoted 

to skin image retrieval by computer extracted visual features for various types of skin 

disease. Skin image retrieval differentiates from disease justification between only two 

possibilities like melanoma research, or image classification – classification of a group of 

images into different categories, or retrieval by text. However, we can still borrow ideas 

from those techniques, such as the use of color, texture feature extraction, and 

segmentation to extract shape feature.  

3.4 Performance evaluation of content-based image retrieval 

Muller et al, 2001, gave a review on evaluation methods in CBIR systems. They 

listed several kinds of performance evaluation methods: rank of the best match, average 

rank of relevant images, precision and recall, target testing, error rate, retrieval efficiency 

and correct and incorrect detection. 

Precision and recall, proposed by Squire et al, 1999 is the most common 

evaluation measure used in image retrieval. 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  #𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓
𝒓𝒓𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓 # 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓

  Equation 3-1 

𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓 =  #𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓
𝑻𝑻𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓 #𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒑𝒑𝒑𝒑 𝒓𝒓𝒕𝒕𝒑𝒑 𝒑𝒑𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑

 Equation 3-2 

They are usually presented as a precision vs. recall graph (PR graph) as shown in 

Fig. 3-3. 
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Figure 3-3  An example of precision vs. recall graph (Squire et al, 1999) 

An ideal case is: precision=1 for all values of recall when all the relevant images 

are retrieved before any irrelevant ones. 

 

Figure 3-4  An idea case of precision vs. recall graph  



www.manaraa.com

23 
 

4. Skin color images data set 

In this chapter, the data set used for the project is introduced.  

Our data set contains eight classes of skin disease, provided by a local company 

(Logical Images, 2009). It has been divided into two sets: developmental data with a total 

of 139 labeled images, and an independent test data with a total of 76 unlabeled images.  

The eight classes of skin disease are listed in Table 4-1 (The Free Dictionary, 

2009). 

All images for the data set are included in the Appendix B. The sample size of 

images for each disease in the developmental data is listed in Table 4-2 .Examples of 

each kind of disease are shown in Table 4-3. 

All the images are in JPEG format. No pixel dimension information was given, 

except for a few images with a ruler on it, indicating the actual size per pixel. The 

illumination condition was also unknown for each image. Also, the images were collected 

with various backgrounds. 

 

  



www.manaraa.com

24 
 

Table 4-1  Definition of the Diseases 

Skin disease Definition 
Fluid-filled A blister filled with fluid (an amorphous substance whose 

molecules move freely past one another). 
Gangrene-necrotic tissue A mortified or gangrenous part or mass, (pathology) gangrene that 

develops in the presence of arterial obstruction and is characterized 
by dryness of the dead tissue and a dark brown color. 

Pigmentation Coloration of tissues by pigment. 
Purpura–violaceous Purpura: a small hemorrhage in the skin, mucous membrane, or 

serosal surface; a group of disorders characterized by the presence 
of purpuric2

Violaceous: having a violet color, usually describing a discoloration 
of the skin. 

 lesions, ecchymoses, and a tendency to bruise easily. 

Raised with color change A convex area with a different color from normal skin. 
Redness – general Red patches on the skin. 
Ulcerated A lesion of the skin or a mucous membrane such as the one lining 

the stomach or duodenum that is accompanied by formation of pus 
and necrosis of surrounding tissue, usually resulting from 
inflammation or ischemia; a corrupting condition or influence. 

Warty-crusty-scabby A hard rough lump growing on the skin, caused by infection with 
certain viruses and occurring typically on the hands or feet; A 
similar growth or protuberance, as on a plant. 

 

Table 4-2  Size of the Developmental Data Set 

Skin disease sample size  
fluid filled  20  
gangrene-necrotic  12  
pigmentation  17  
purpura - violaceous  18  
raised with color change  21  
redness - general  19  
ulcerated-eroded  17  
warty-crusty-scabby  15  
Sum  139 

.  

                                                 
2 Purpuric: a condition characterized by hemorrhages in the skin and mucous membranes that result in the 
appearance of purplish spots or patches, also called peliosis. 
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Table 4-3 Example Images for Each Skin Disease 

Skin disease Examples of the disease 
Fluid filled 

    
Gangrene-
necrotic 

    
Pigmentation  

    
Purpura-
violaceous 

    
Raised-with-
color-change 

    
Redness-
general 

    
Ulcerated-
eroded 

    
Warty-crusty-
scabby 

    

Image(s) © Logical Images, Inc. All rights reserved. 
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5. Methodology 

A general overview of the approach will be provided.  Then, we will elaborate on each 

part of it in the subsections. First, the pre-processing steps are given. Second, a visual feature 

identification study is discussed by analyzing the character of each skin disease. Third, we discuss 

the feature extraction and similarity measure technique used for each selected feature. Four, due 

to different distance metric used for each feature, a distance metric combination will be 

employed. However, before determining the scheme of distance metric combination, each visual 

feature will be analyzed separately to see their performances. Finally, a self-developed scoring 

system for performance evaluation will also be introduced. 

5.1 General approach 

The general approach is based on content based image retrieval methods. Fig.5-1 

illustrates an overview of the retrieval process. 

 

Figure 5-1 Overview of the skin image retrieval process 

The input test image is a single image either from the developmental data set or 

the independent test data. The skin disease library consists of the labeled developmental 

data. The dermatological image retrieval system is the main algorithm whose scheme will 
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be discussed next. The outputs are five best candidates from the skin disease image 

library that are most similar to the test image. 

The dermatological image retrieval system consists of the following parts. First, 

pre-process both the test image and image library. Second, after feature identification, 

color, texture and shape feature are extracted. Third, for the color feature, histogram 

intersection serves as the similarity measure; for the texture and shape feature, Euclidean 

distance is used as the distant metric. Four, distance metric combination is used to 

colligate the two distant metrics. Fig.5-2 shows the content of dermatological image 

retrieval system. 

 

 

 

 

 

 

 

Figure 5-2  Content of the dermatological image retrieval system 

5.2 Pre-process 

All the images are in JPEG format. In order to perform the retrieval algorithm on 

image, having the same level of actual size, one should either know the pixel dimension 

beforehand or make sure all the images have the same pixel dimension. So, a rescaling 

must be performed to both the developmental and independent testing data.  

Color feature 
extraction 

Texture feature 
extraction 

Shape feature 
extraction 

Color feature 
similarity measure 

Texture & Shape feature 
similarity measure 

Distance metric 
combination 
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In our case, we rescale both the test and library images to the approximately same 

scale level using human visual estimation. The pixel dimension is set to be around 100 

pixels/ 1 cm.  

From the sample images shown earlier, one can see they have various 

backgrounds, which could influence the performance of the algorithm. What is more, 

different types of skin color may also have an impact on the result of the method. So, as 

to minimize all the factors except the disease itself, a region of interest (ROI) should be 

extracted to make sure it contains the maximum information of disease and minimum 

information of the background.  

So, the second step in pre-processing is to manually select the region of interest 

(ROI) to contain only the disease and a little surrounding skin. Thus, a non-skin region 

like a table cloth is excluded, which could disturb the performance of the algorithm.  One 

image may produce several ROIs, for the sake of a full representation of the disease. For 

record keeping, ROIs excerpted have the same image number with an additional 

sequential number appended. The examples are shown in Fig.5-3. 
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The rescaled image ROIs 

 
Fluid 1903 

 
Fluid 1903-1 

 
Purpura-violaceous 10501 

 
Purpura-violaceous 

10501-1 

 
Purpura-violaceous 

10501-2 

 
Purpura-violaceous 

10501-3 

 

Image(s) © Logical Images, Inc. All rights reserved. 

Figure 5-3 Two examples of ROI selection 

The size of developmental data set after pre-processing is given in Table 5-1; the 

size of independent test data set after pre-process is given in Table 5-2.  
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Table 5-1 Size of Developmental Data Set after Pre-process 

Skin disease Original sample size  Sample size after pre-process 

  fluid filled  20 50 

gangrene-necrotic  12  24 

pigmentation  18 42 

purpura - violaceous  19 52 

raised with color change  22 63 

redness - general  20  40 

ulcerated-eroded  18 29 

warty-crusty-scabby  15 42 

Sum  144 342 
 

Table 5-2 Size of Independent Test Data Set after Pre-process 

Original sample size Sample size after pre-process 
76 167 
 

5.3 Feature identification 

 In this sub-section, important visual feature factors for image data retrieval are 

investigated, based on which image processing techniques can be implemented. 

Color:  Since most skin diseases have their specific color, color plays a key role in this 

whole process of identification, especially for those diseases that have a 

characterized color in a large homogenous region. 

Texture:  Normal skin usually has a uniformed texture pattern, distinguished from skin 

disease whose texture may vary a lot. Some skin diseases display a high 
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homogeneity, while some others show a vivid pattern whose intensity varies 

quickly in the neighborhood.  

Shape: in the data set, elliptical shape or circular shape will be identified. 

Table 5-3 gives a full description of visual features for every type of skin disease 

in the data set based upon a visual examination of all labelled images. 

Table 5-3 Visual Feature Description for Each Skin Disease 

disease Color Texture Shape 
fluid filled  Red or white Homogenous  Elliptical  
gangrene-necrotic  Black  Homogenous No shape 
pigmentation  Contrast with normal skin Homogenous No shape 
purpura - 
violaceous  

Dark red or  reddish purple  Heterogeneous  No shape 

raised with color 
change  

Contrast with normal skin Heterogeneous  Some are elliptical 

redness-general  Red or pink Homogenous No shape 
ulcerated-eroded  Mixed color Heterogeneous Some are elliptical 
warty-crusty-
scabby  

Contrast with normal skin Heterogeneous Some are elliptical 

 

5.4 Feature extraction 

In this sub-section, we will discuss how to extract those features identified above.  

Color:  the question for using the color feature is to choose the suitable color space for 

our database. The most common color spaces are RGB, HSV (stands for hue, 

saturation, value), Lab (dimension L for luminance and a and b for the color-

opponent dimensions, based on nonlinearly-compressed CIE XYZ color space 

coordinates).Color models of RGB, HSV and Lab are shown in Fig.5-4, 5-5 and 

5-6 separately.  

http://en.wikipedia.org/wiki/CIE_XYZ_color_space�
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Figure 5-4 Additive primary colors (Wikipedia, 2009) 

 

 
Figure 5-5 HSV coordinate system and color model (Khan, 2005) 
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Figure 5-6 LAB color model (Khan, 2005) 

  In the development of the algorithm, three different color spaces were 

tested: HSV, Lab, RGB. Images are read in format of RGB. Therefore, we needed 

to perform RGB to HSV and RGB to LAB transformation (Appendix A). Table 5-

4 gives the scoring results (which will be discussed later) by testing the three 

different color spaces in the full image retrieved process. The higher the score the 

better the performance is. The intermediate result shows HSV space has the best 

outcome. 

Table 5-4 Scoring Results of Three Different Color Space 

Disease HSV space Lab space RGB space 
fluid filled  0.64 0.54 0.60  
gangrene-necrotic  0.73  0.55 0.55 
pigmentation  0.38 0.29 0.33 
purpura-violaceous  0.62  0.58  0.45 
raised with color change  0.52 0.45  0.52 
redness-general  0.67 0.49 0.50 
ulcerated-eroded  0.33 0.31 0.33 
warty-crusty-scabby  0.67 0.52 0.57 
mean 0.57 0.47 0.48 



www.manaraa.com

35 
 

 

In HSV color space, the “hue” parameter is the color blend, usually 

characterized by eight principal colors: black, white, red, yellow, green, cyan, 

blue and magenta. Thus, in order to make finer quantization, the Hue channel is 

further quantized unevenly into 20 blocks according to these eight principal 

colors. The quantization scheme is listed in Table 5-5. “Hue” value in Table 5-5 is 

normalized between 0 and 1. 

The "Saturation" parameter selects how grey or pure the color will be. The 

"Value" parameter defines the brightness of the color. Since "saturation" and 

“value” do not have preferred value like “hue”, they are equally quantized into 20 

blocks. Thus, each channel will have 20 blocks.  

Table 5-5 Quantizing Result of Hue Channel 

Principal colors Quantizing result 
black value < .2 
white saturation < .05 & value > .85 
red hue > .9167 & hue <= .96 

hue > .96 | hue <= .033 
hue > .033 & hue <= .083 

yellow hue > .083 & hue <= .125 
hue > .125 & hue <= .175 
hue > .175 & hue <= .25 

green hue > .25 & hue <= .3 
hue > .3 & hue <= .35 
hue > .35 & hue <= .4167 

cyan hue > .4167 & hue <= .47 
hue > .47 & hue <= .52 
hue > .52 & hue <= .5833 

blue hue > .5833 & hue <= .64 
hue > .64 & hue <= .7 
hue > .7 & hue <= .75 

magenta hue > .75 & hue <= .80 
hue > .80 & hue <= .85 
hue > .85 & hue <= .9167 
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure 5-7 An example image for color feature extraction 

Table 5-6 An Example of Color Feature Vector 

color space 
components 

Extracted feature vector 

Hue  [0,0,0,0.16,0.84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 
Saturation [0,0,0,0,0,0.02,0.04,0.08,0.12,0.21,0.22,0.18,0.09,0.03,0,0,0,0] 
Value  [0,0,0,0,0,0.01,0.03,0.08,0.13,0.15,0.13,0.11,0.10,0.11,0.10,0.03,0.01,0,0,0] 
 

As an example, for the image shown in Fig.5-7, the extracted color 

features are listed in Table 5-6. 

Texture: Haralick’s texture feature (explained in Appendix A) is employed to describe 

the texture pattern.  First, the co-occurrence matrix is computed.  The number of 

gray-levels is scaled into 64 levels, so as to reduce the computation. Considering 

all directions equally, we generate four co-occurrence matrixes at equally spaced 

directions with a displacement of two pixels, as shown in Table   5-7 and Fig.5-8. 

Table 5-7 Displacement Vector of Co-occurrence Matrix in Four Direction 

Angle Displacement vector 𝒓𝒓 

0o [0, 2] 

45o [-2, 2] 

90o [-2, 0] 

135o [-2,- 2] 

 



www.manaraa.com

37 
 

  

     

     

     

     

     

Figure 5-8 Illustration of the four displacement vectors 

Since we want to focus on the homogeneity property of the texture pattern, 

contrast and homogeneity features of the gray level co-occurrence matrix 

(GLCM) are selected to represent the texture property. (The definitions of 

contrast and homogeneity are shown in Appendix A). Thus, the texture feature, 

we have 2×4 = 8 feature parameters. Since the range of homogeneity is [0, 1], it 

does not need normalization. The theoretical range of contrast 

is[0 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) − 1)2]. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is 64 in our case, so the range is [0, 

3969]. However, the practical results of contrast are far below this maximum 

value. As a result, the normalization of contrast is to divide the current contrast 

value by the maximum value among the current contrast value and those of the 

library images.  

As an example, the extracted texture features of Fig.5-7 are listed in     

Table 5-8. 

  

Pixel of interest 0o [0, 2] 0o [0, 2] 0o, [0, 2] 

135o, [-2, -2] 45o, [-2, 2] 

90o, [-2, 0] 
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Table 5-8 An Example of Texture Feature Vector 

Texture property Texture feature vector 

0o 45o 90o 135o 
Contrast 6.75 7.08 2.40 7.07 
Normalized contrast 0.07 0.07 0.02 0.07 
Homogeneity  0.51 0.50 0.62 0.49 

 

Shape: since the images to be analyzed are all extracted ROIs, they just contain the 

diseased area and normal skin as background. So, a two class K-means clustering 

(explained in Appendix A) resolution is manipulated to separate the object from 

background. For conformity with color feature extraction, HSV space is used to 

generate vectors for classification. K-means clustering is performed on the Value 

channel. 

After K-means clustering, the image is divided into two classes: the object 

of interest and the background. The Canny descriptor (Green, 2002) is employed 

to extract edges of the object. 

For those images containing elliptical features (such as fluidfilled or 

ulcerated), the edges are more close to an ellipse than those images that have no 

evident elliptical features (such as pigmentation, gangrene and redness). Using 

this observation, we perform elliptical regression technique, which finds the 

optimization ellipse based on least square errors. Fig.5-9 illustrates an example of 

the whole process. 
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a) The image after pre-process  b) The result of 2-means clustering 

  
c) The edge map extracted by 

Canny descriptor 
d) The regressed ellipse  

Image(s) © Logical Images, Inc. All rights reserved. 

Figure 5-9 An example of elliptical regression 

To characterize this elliptical shape feature, one wants to know how close 

is the contour of the object to the regressed ellipse. The most commonly used 

method to measure the distance between two contours is the Hausdorff Distance 

(see in Appendix A). So, Hausdorff Distance was selected initially as the final 

shape feature. However, to reduce the misinterpretation of the contour caused by 

some outliers, Improved Hausdorff Distance is also investigated in the test. In the 

final algorithm, the Improved Hausdorff Distance was chosen to represent the 

shape feature parameter. 
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Considering the impact of image size on the Hausdorff Distance, even if 

two contours have the same similarity to an ellipse, the Hausdorff Distance 

between the contour and the regressed ellipse differs due to different image size - 

the larger the size, the greater the Huasdorff Distance. To eliminate the influence 

caused by image’s size, Huasdorff Distance is divided by one half of the number 

of pixels along the image’s diagonal as normalization. 

As an example, the extracted texture features of Fig.5-7 are listed in     

Table 5-9.  

Table 5-9 An Example Shape Feature Parameter 

Shape property Shape feature parameter 
Hausdorff Distance 15.33 
Normalized Hausdorff Distance 0.13 
Improved Hausdorff Distance 41.23 
Normalized Improved Hausdorff Distance 0.36 

5.5 Similarity measure  

 The extracted color features are three vectors – the quantized histogram blocks for 

each channel of HSV space. Histogram intersection is carried out to measure the 

similarity of histogram distribution in each channel between the test image and the 

reference image from the image library. The intersection result is normalized so that the 

outcome of each channel is a value between 0 and 1.  

Now, we define the histogram intersection result of Hue, Saturation and Value as 

𝐷𝐷ℎ ,𝐷𝐷𝑠𝑠 ,𝐷𝐷𝑣𝑣 . And the distant metric for color feature is defined as: 

 𝑫𝑫𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑 = 𝟏𝟏
𝟑𝟑
∙ 𝑫𝑫𝒕𝒕 + 𝟏𝟏

𝟑𝟑
∙ 𝑫𝑫𝒑𝒑 + 𝟏𝟏

𝟑𝟑
∙ 𝑫𝑫𝒓𝒓  Equation 5-1 

We give the same weight to each channel, so that each component of the HSV 

space will have an equal impact on the result. The final distant metric is also normalized 
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into [0, 1]. The more similar the color of the test image is to that of the reference image, 

the larger the color distant metric. 

 The outcomes of texture and shape features are 9 scalar values normalized from 0 

to 1. The feature 𝒇𝒇 vector for texture and shape consists of 4 contrast features 

(𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒), 4 homogeneity features (𝒕𝒕𝟏𝟏,𝒕𝒕𝟐𝟐,𝒕𝒕𝟑𝟑,𝒕𝒕𝟒𝟒), and 1 Improved Hausdorff 

Distance (𝑰𝑰). Thus, regarding these 9 scale values as a vector in a 9 dimensional space: 

𝒇𝒇 = [𝒑𝒑𝟏𝟏, 𝒑𝒑𝟐𝟐, 𝒑𝒑𝟑𝟑, 𝒑𝒑𝟒𝟒,𝒕𝒕𝟏𝟏,𝒕𝒕𝟐𝟐,𝒕𝒕𝟑𝟑,𝒕𝒕𝟒𝟒, 𝑰𝑰]′  Equation 5-2 

The similarity of texture and shape feature between the test image and library 

image is the Euclidean distance of their vectors. The greater the similar they are, the 

smaller the distance is.  

5.6 Self-developed scoring system 

In section 3.4, the standard evaluation method for content-based image retrieval 

was introduced. However, the Precision vs. Recall graph is drawn while adjusting the 

number of images retrieved from 1 to the size of the whole image library. So, the 

Precision vs. Recall graph can be regarded as an evaluation for the image retrieval 

system, but not an evaluation based on a given number of retrieved images. In our case, 

the number of images retrieved is fixed at five, so we develop a scoring system particular 

to this preset range without changing the number of images retrieved.  

Each result in the five best candidates should be weighted differently. Because the 

higher in the order a given image is in the five best candidates, the larger weight the 

image has in the doctor’s judgment. So, we weight the five best matches in the following 

order: 5/5, 4/5, 3/5, 2/5, 1/5. 
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 Besides this weight of order, we set another weight according to the content of the 

image. For each image of the five best candidates, if the image is in the same class of the 

input image, it is considered as a correct result, and its weight is 1. Else, it is considered 

as a wrong result, and its weight is 0. 

 To combine these two kinds of weights above, we multiply the weights 

correspondingly for each image in the five best candidates, and average them as the score 

for this particular input test image. So, the maximum of the score is : 

1*(5/5+4/5+3/5+2/5+1/5) = 3, and the minimum of the total weight is 

0*(5/5+4/5+3/5+2/5+1/5) = 0. So, a normalized score is obtained by dividing the score 

by 3. 

If the input is a classified data set, then we can evaluate the retrieval system 

performance by computing the score for each class of disease. Suppose a single input 

image 𝑐𝑐𝑠𝑠 is from class𝐺𝐺: {𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 … , 𝑐𝑐𝐼𝐼}. After image retrieval, the individual input image 

has five best candidates𝑑𝑑𝑠𝑠 : {𝑑𝑑𝑠𝑠1,𝑑𝑑𝑠𝑠2,𝑑𝑑𝑠𝑠3,𝑑𝑑𝑠𝑠4,𝑑𝑑𝑠𝑠5}. The score of each candidate is: 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝑾𝑾𝒑𝒑𝒑𝒑 ∗𝑾𝑾𝒊𝒊  Equation 5-3 

𝑊𝑊𝑠𝑠𝑖𝑖  is the weight of order,𝑊𝑊𝑠𝑠1 = 5
5

 ,𝑊𝑊𝑠𝑠2 = 4
5

 ,𝑊𝑊𝑠𝑠3 = 3
5

 ,𝑊𝑊𝑠𝑠4 = 2
5

 ,𝑊𝑊𝑠𝑠5 = 1
5
 . 

𝑊𝑊𝑔𝑔  is the weight of content. If the candidate is from the same class of the input 

image, 𝑊𝑊𝑔𝑔 = 1; else, 𝑊𝑊𝑔𝑔 = 0. 

So, the normalized score of this particular input image is:  

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = ∑ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝟓𝟓
𝒑𝒑=𝟎𝟎 /𝒑𝒑𝒓𝒓𝒑𝒑𝒊𝒊𝒑𝒑  Equation 5-4 

𝑟𝑟𝑟𝑟𝑖𝑖𝑔𝑔𝑠𝑠 = 𝑚𝑚𝑟𝑟𝑚𝑚 − min = 1 ∗ �
5
5

+  
4
5

+  
3
5

+  
2
5

+  
1
5�

− 0 ∗ �
5
5

+  
4
5

+  
3
5

+  
2
5

+  
1
5�

= 3  

The averaging score of this class is: 
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𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏
𝑰𝑰
∑ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑰𝑰
𝒑𝒑=𝟏𝟏   Equation 5-5 

𝐼𝐼 is the sample size of the class.  

The whole scoring process for all images in each class C is shown in Fig.5-10. 

 

Figure 5-10 The flowchart of scoring process 

5.7 Individual feature performance 

The algorithms for image retrieval only based on the color, texture and shape 

feature individually are illustrated in Fig. 5-11, Fig.5-12 and Fig.5-13. 
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Figure 5-11 Flowchart of algorithm with color feature only 

Image library 
Input test image from 
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Figure 5-12 Flowchart of algorithm with texture feature only 
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Figure 5-13 Flowchart of algorithm with shape feature only 
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The scores of each disease for the three systems are listed in Table 5-10. And Fig. 

5-14 gives the chart of the result. 

Table 5-10 The Scoring Results of Each Individual System 

Class  color texture shape 

contrast  homogeneity Hausdorff 
distance 

Improved 
Hausdorff 
distance 

fluid filled   0.33 0.22 0.22 0.07 0.14 

gangrene-
necrotic  

0.41  0.08 0.10 0.04 0 

pigmentation  0.29 0.16 0.17 0.14 0.22 

purpura - 
violaceous  

0.36 0.17 0.21 0.14 0.18 

raised with 
color change  

0.45 0.29 0.28 0.15 0.14 

redness-
general  

0.61 0.37 0.34 0.14 0.18 

ulcerated-
eroded  

0.51 0.10 0.14 0.12 0.15 

warty-crusty-
scabby  

0.45 0.29 0.21 0.13 0.11 

sum 3.41 1.68 1.67 0.93 1.12 
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Figure 5-14 The chart of score for individual systems  

From the table above, the performance of Improved Hausdorff distance is a little 

better than Hausdorff distance. So we choose Improved Hausdorff distance for the shape 

feature. 

From the chart, we can see the system using only the color feature performed best 

and high above the other two features. Next is the system with only the texture feature. 

The worst is the system with only the shape feature.  

5.8 Distance metric combination  

The task of image retrieval algorithm is to find the five best candidates for the test 

image. For the color feature separately, they are the five library images that can produce 

the top five maximums in the similarity measure step. For the texture and shape features 
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separately, there are the five library images that can produce the top five minimums in the 

similarity measure step. 

So, since texture and shape features are best when minimum, they can be 

integrated into a vector of Euclidean space in the similarity measure as discussed in 

section 5.4. The system with combined texture and shape features is shown in Fig. 5-15. 

 

 



www.manaraa.com

50 
 

  

Five best candidates 

Figure 5-15 Flowchart of algorithm with texture and shape feature  
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Since the similarity measure methods for the color feature varies from that of 

texture and shape feature, a combination of the two distance metrics was developed. We 

implemented an ad hoc approach to combine these two distance metrics based on the 

result of the developmental data set.  

Suppose we have two distance metrics A and B. The similarity metrics of 

developmental data set generated by A are 𝑟𝑟1,𝑟𝑟2, … ,𝑟𝑟𝑖𝑖𝑟𝑟 , the training similarity metric 

generated by B are 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑖𝑖𝑟𝑟 . The range of them are 𝑅𝑅𝐴𝐴 ,𝑅𝑅𝐵𝐵. The score of distance 

metric A and B are 𝑆𝑆𝐴𝐴 , 𝑆𝑆𝐵𝐵. The similarity metrics of an independent test data generated by 

A and B are 𝑡𝑡𝐴𝐴 , 𝑡𝑡𝐵𝐵. These parameters are illustrated in Fig. 5-16.  

 

Figure 5-16 Illustration of distance metric combination scheme 

Then, the combined parameter for choosing the five best candidates is: 

𝒑𝒑𝑨𝑨,𝑩𝑩 =  𝑺𝑺𝑨𝑨 ∙
𝒓𝒓𝑨𝑨
𝑹𝑹𝑨𝑨

+  𝑺𝑺𝑩𝑩 ∙
𝒓𝒓𝑩𝑩
𝑹𝑹𝑩𝑩

  Equation 5-6 
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It is based on the idea that the higher the score of the distance metric’s 

performance in the training data set, the more weight it carries in the combined distance 

metric. And each component in the combined distance metric is normalized by dividing 

by their data range. 

In our case, equation 5-6 would be: 

𝐂𝐂𝐂𝐂,𝐓𝐓&𝑆𝑆 =  𝐒𝐒𝐂𝐂 ∙
𝐓𝐓𝐂𝐂
𝐑𝐑𝐂𝐂

 −  𝐒𝐒𝐓𝐓&𝑆𝑆 ∙
𝐓𝐓𝐓𝐓&𝑆𝑆
𝐑𝐑𝐓𝐓&𝑆𝑆

  Equation 5-7 

The coefficients 𝑆𝑆𝐺𝐺  and 𝑆𝑆𝑇𝑇&𝑆𝑆 are the weights for color and texture & shape 

component. The higher score of the component the more weight the component in 

combination. Thus, coefficient 𝑆𝑆𝐺𝐺  is defined as the sum of the scores for all the classes 

using the image retrieval system based on color feature only. 𝑆𝑆𝑇𝑇&𝑆𝑆 is defined as the sum 

of the score for all the classes using the image retrieval system based on texture & shape 

features only. 

𝑺𝑺𝑪𝑪 =  ∑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑪𝑪  Equation 5-8 

𝑺𝑺𝑻𝑻&𝑆𝑆 =  ∑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻&𝑆𝑆  Equation 5-9 

𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑠𝑠𝐺𝐺  and 𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑠𝑠𝑇𝑇&𝑆𝑆 are obtained by flowchart in Fig.5-17.  
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Figure 5-17 Flowchart of procedure for 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐂𝐂 and 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐓𝐓&𝑆𝑆 

𝑇𝑇𝐺𝐺  is the similarity metric generated by color feature similarity measure, 𝑇𝑇𝑇𝑇&𝑆𝑆 is 

the similarity metric generated by texture and shape features similarity measure. They are 

obtained through the flowchart in Fig.5-18. 
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Figure 5-18 Flowchart of procedure for 𝑻𝑻𝐂𝐂 and 𝑻𝑻𝐓𝐓&𝑆𝑆 

Color processed parameter 𝑇𝑇𝐺𝐺  is the normalized histogram intersection result, so 

the range of 𝑇𝑇𝐺𝐺: 𝑅𝑅𝐺𝐺 = [0 1]. Texture & Shape processed parameter 𝑇𝑇𝑇𝑇&𝑆𝑆  is the Euclidean 

Distance between two vectors in a nine dimensional space, each dimension of the vector 

has a range between 0 and 1. So, the range of 𝑇𝑇𝐺𝐺: 𝑅𝑅𝑇𝑇&𝑆𝑆 = �0 √9� = [0 3]. 

The larger 𝑇𝑇𝐺𝐺  is, and the smaller 𝑇𝑇𝑇𝑇&𝑆𝑆 is, the closer are the input test image and 

the library image. So, we add a minus sign in front of the Texture & Shape component, so 

that the larger 𝐺𝐺𝐺𝐺,𝑇𝑇&𝑆𝑆 is, the more agreement between the input test image and the library 

image. After searching through the whole image library, the five images that produce the 
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top five maximum 𝐺𝐺𝐺𝐺,𝑇𝑇&𝑆𝑆 scores with the input test image are chosen as the five best 

candidates. 

The scoring results 𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑠𝑠𝐺𝐺  and 𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑠𝑠𝑇𝑇&𝑆𝑆 for developmental data set are listed in 

Table 5-11. 

Table 5-11 Scoring Results of Systems with Color and Texture & Shape Feature  

Class  𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑪𝑪 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻&𝑆𝑆  

fluid filled   0.33 0.22 
gangrene-necrotic  0.41 0.10 
pigmentation  0.29 0.32 
purpura - violaceous  0.36 0.25 
raised with color change  0.45 0.35 
redness-general  0.61 0.40 
ulcerated-eroded  0.51 0.17 
warty-crusty-scabby  0.45 0.34 
sum 3.41 2.15 

 

Therefore, 𝑆𝑆𝐺𝐺 =  3.41, 𝑆𝑆𝑇𝑇&𝑆𝑆 =  2.15. So Equation 5-7 will be: 

𝑪𝑪𝑪𝑪,𝑻𝑻&𝑆𝑆 =  𝟑𝟑.𝟒𝟒𝟏𝟏 ∙ 𝑻𝑻𝑪𝑪
𝟏𝟏

 –  𝟐𝟐.𝟏𝟏𝟓𝟓 ∙ 𝑻𝑻𝑻𝑻&𝑆𝑆
𝟑𝟑

  Equation 5-10 
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6. Results 

This section is divided into two parts: results for the developmental data set and 

results for the independent test data set. In each part, we will give an overview of the 

algorithm, and then provide the five best candidates. At last, the algorithm performance 

evaluation will be discussed. 

6.1 Results for developmental data set 

In this sub-section, an overview of the algorithm is given in Fig.6-1. Then, a sample 

result is shown in Fig.6-2. At last, the results using the standard precision vs. recall 

method and the self-developed scoring method will be presented.
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Figure 6-1 The image retrieval algorithm for developmental data set  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure 6-2 Results for “gangrene-necrotic\0074-1.jpg” from developmental data 
set 

The top left image in Fig. 6-2 is the input test image after pre-processing. The top 

right image is the best candidate from the library image, the left image in the second row 

is the second best candidate, the right image in the second row is the third best candidate, 

the left bottom image is the fourth best candidate, and the right bottom image is the fifth 

best candidate. Doctors can make judgment based on these candidates.  

We notice that the best match “gangrene-necrotic\0074-2” is a ROI excerpted 

from the same original image as input “Gangrene-necrotic\0074-1”, since they have the 

same root number.  

Input: 1) 

4) 

2) 3) 

5)  
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“Raised with color change\05059-1” ranks in the 2nd place, for its similarity in 

texture and color. “Purpura-violaceous\24051-1” ranks in the 3rd place as it also contains 

black and red colors. However, “gangrene-necrotic\07948-1” has neither red color as 

“Purpura-violaceous\24051-1”, nor similar texture pattern as “raised with color 

change\05059-1”, so it ranks in the 4th place. 

The score for this example is shown in Table 6-1. 

Table 6-1 Score for the Result in Fig.6-2 

Retrieved  images 𝑾𝑾𝒑𝒑 𝑾𝑾𝒊𝒊 𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 
Gangrene-necrotic\0074-2 1 1 1 
Raised with color change\05059-1 4/5 0 0 
Purpura-violaceous\24051-1 3/5 0 0 
Gangrene-necrotic\07948-1 2/5 1 2/5 
Purpura-violaceous\27644-1 1/5 0 0 
Score   0.47 

 

6.1.1 The standard performance evaluation 

In section 3.4, we introduced the standard performance evaluation method. We 

revise Equation 3-1 and 3-2 into our case: 

 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  
#𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒇𝒇𝒑𝒑𝒑𝒑𝒊𝒊

𝒓𝒓𝒕𝒕𝒑𝒑 𝒑𝒑𝒓𝒓𝒊𝒊𝒑𝒑 𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒑𝒑 𝒑𝒑𝒇𝒇 𝒓𝒓𝒕𝒕𝒑𝒑 𝒒𝒒𝒒𝒒𝒑𝒑𝒑𝒑𝒒𝒒 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑
#𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑

  Equation 6-1 

𝒑𝒑𝒑𝒑𝒑𝒑𝒓𝒓𝒓𝒓𝒓𝒓 =  
#𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒓𝒓𝒑𝒑𝒓𝒓 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑𝒑𝒑 𝒇𝒇𝒑𝒑𝒑𝒑𝒊𝒊

𝒓𝒓𝒕𝒕𝒑𝒑 𝒑𝒑𝒓𝒓𝒊𝒊𝒑𝒑 𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒑𝒑 𝒑𝒑𝒇𝒇 𝒓𝒓𝒕𝒕𝒑𝒑 𝒒𝒒𝒒𝒒𝒑𝒑𝒑𝒑𝒒𝒒 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑
𝒓𝒓𝒕𝒕𝒑𝒑 𝒑𝒑𝒑𝒑𝒔𝒔𝒑𝒑 𝒑𝒑𝒇𝒇 𝒓𝒓𝒕𝒕𝒑𝒑 𝒑𝒑𝒓𝒓𝒓𝒓𝒑𝒑𝒑𝒑 𝒓𝒓𝒑𝒑 

𝒘𝒘𝒕𝒕𝒑𝒑𝒑𝒑𝒕𝒕 𝒓𝒓𝒕𝒕𝒑𝒑 𝒒𝒒𝒒𝒒𝒑𝒑𝒑𝒑𝒒𝒒 𝒑𝒑𝒊𝒊𝒓𝒓𝒊𝒊𝒑𝒑 𝒃𝒃𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒊𝒊𝒑𝒑

  Equation 6-2 

To draw the precision vs. recall graph, we set the range of “# retrieved images” to 

vary from 1 to the size of the whole developmental data set. For each class of disease, we 

take average precision and recall among all images of the class as the representative for 

the class. The precision vs. recall graph for each disease is shown in Fig.6-3 to Fig. 6-10. 
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Figure 6-3 The precision vs. recall graph for fluidfilled 

 
Figure 6-4 The precision vs. recall graph for gangrene-necrotic 
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Figure 6-5 The precision vs. recall graph for pigmentation 

 
Figure 6-6 The precision vs. recall graph for purpura-violaceous 
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Figure 6-7 The precision vs. recall graph for raised_with_color_change 

 
Figure 6-8 The precision vs. recall graph for redness-general 
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Figure 6-9 The precision vs. recall graph for ulcerated-eroded 

 
Figure 6-10 The precision vs. recall graph for warty-crusty-scabby 
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From these graphs above, we can see all of them are in accordance with the 

theoretical case, in that, the precision drops while recall increases. Also, except for 

gangrene-necrotic and redness-general, the graphs show a deceleration of drop rate at 

around recall = 0.1. Among all classes, the result for “redness-general” is the best, since 

precision is higher than for other classes at same recall value. 

6.1.2 Self-developed scoring result 
 

For the scoring method introduced in section 5.5., the final combination scoring is 

listed in Table 6-1, shown in comparison with scoring using only the color feature and 

only the texture & shape features. Fig. 6-11 gives the chart of the scoring result. 

Table 6-2 Scoring Result of System with Only Color Feature, Texture & Shape 
Feature and Distance metric Combination 

Class  color Texture & shape combination 
fluid filled  0.33 0.22 0.43 
gangrene-necrotic  0.41 0.10 0.57 
pigmentation  0.29 0.32 0.46 
purpura - violaceous  0.36 0.25 0.42 
raised with color change  0.45 0.35 0.57 
redness-general  0.61 0.40 0.66 
ulcerated-eroded  0.51 0.17 0.47 
warty-crusty-scabby  0.45 0.34 0.41 
average 0.43 0.27 0.50 
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Figure 6-11 Chart of score of developmental data set for individual systems and 
combined system 

From the table and chart above, overall, the combination scheme performs the 

best, but for some classes, it is a little worse than the system using only the color feature.  

Among all the classes of disease, “redness-general” has the highest score, which 

is in agreement with the standard evaluation result. 

The color feature alone dominates over the texture and shape feature for most 

diseases except for pigmentation. This unintuitive result can be explained by recognizing 

that pigmentation refer to a relative change in skin color, while our algorithm is based on 

a absolute color value. 

In our experiment, the most computationally demanding part was shape feature 

extraction, especially the elliptical regression. 
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The retrieved candidates often contained the ROI images excerpted from the same 

original one, like the one in Fig. 6-2. This is because those excerpted images from the 

same source usually have the highest similarity. 

6.2 Results for independent test data set 
 

In this sub-section, an overview flowchart of the algorithm for independent test 

data is shown in Fig.6-12. An example result is shown in Fig.6-13. The self-developed 

scoring results are given in Table 6-2. 
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Figure 6-12 The algorithm for independent test data  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure 6-13 The result of “09062-1.jpg” from independent data set 

The top left image in Fig. 6-13 is the input test image after pre-processing. The 

top right image is the best candidate of the input test image, the left image in the second 

row is the second best candidate, the right image in the second row is the third best 

candidate, the left bottom image is the fourth best candidate, and the right bottom image 

is the fifth best candidate. Doctors can make judgment based on these candidates.  

Based on these results of the independent test data, my advisor, Dr. Kerekes 

calculated the score for each class. The self-developed scoring results for each class are 

listed in Table 6-3 and Fig. 6-14 gives the chart of the scoring results for the independent 

test data set in comparison with those of developmental data set.  
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Table 6-3 Scoring Results of Independent Test Data Set 

Class scoring 
fluid filled  0.22 
gangrene-necrotic  0.55 
pigmentation  0.10 
purpura - violaceous  0.37 
raised with color change  0.25 
redness-general  0.75 
ulcerated-eroded  0.11 
warty-crusty-scabby  0.28 
average 0.30 

 

 

Figure 6-14  Chart of score for developmental and independent test data set 

The retrieval result of “redness-general” is again the best. However, the overall 

performance for independent test data set is poorer than that of developmental data set. 

One reason may be that for the developmental data set, the knowledge of the disease type 

will drop a hint in the ROI selection, and thus the selected ROI can represent the disease 

more accurately.  
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Besides, some images have multiple diseases. If it is unlabeled, we might have 

chosen a different diseased region other than the region showing the presumed one. This 

could also cause the mismatch and reduce the accuracy. 

Also, we know for previous analysis, the best matched candidates in 

developmental data set are often from the same original image with the query image. 

However, there is no chance for this to happen in the independent test data set, because 

the candidates can only be selected from the labelled developmental data set. This is also 

an important reason for the drop of accuracy in independent test data set. 

One more reason of the score drop is that the coefficients in distance metric 

combination are obtained using the developmental data set. Thus, the coefficients fit the 

developmental data set better than independent test data set. 

The “pigmentation” score of independent data is much lower than that of 

developmental data. After examination, we find most accurate candidates of 

“pigmentation” in developmental data set are the family members of the input data. That 

is, “pigmentation” gains its score by its family members, while this is not possible in the 

case of independent test data. 

The fall of “ulcerated-eroded” score is due to a difference in the observed features 

between the image in the developmental data and independent test data. Some of the 

“ulcerated-eroded” images in the independent data set are closer to images labelled 

“redness” in the developmental data set. 

The “redness-general” score of the independent test data set is a little higher than 

that of developmental data set, since the “redness-general” samples in the independent 

test data set closely resemble those of the developmental data set in all visual features.  
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7. Summary and conclusions 

7.1 Summary 

Due to the difficulty of skin disease identification for dermatologists, a computer 

aided image system utilizing an image library for image retrieval is needed. The aim of 

our project is to develop a skin image retrieval system that can assist doctors to make 

better judgment. Computer aided image querying saves a lot of effort of the doctors and 

provides results through quantitative methods.  

Because of lack of contemporary work on skin image retrieval for different 

classes of disease, this paper gives a literature review on content-based image retrieval, 

medical image retrieval and skin disease query. We adapted those techniques for general 

image retrieval into our case of study. Also, computer aided skin disease recognition has 

also been explored, so we can refer to those techniques employed in skin feature 

extraction, classification and segmentation.    

Our data set contained two parts: a developmental data set for use as an image 

library with 139 images, and an independent test data set for use as unlabeled test data 

with 76 images. They both included eight kinds of skin diseases: fluidfilled, gangrene-

necrotic, pigmentation, purpura-violaceous, raised with color change, redness-general, 

ulcerated-eroded and warty-crusty-scabby. 

Our method consisted of several parts: pre-process, feature identification, feature 

extraction, similarity measure, and distance metric combination. In pre-process, rescaling 

and ROI selection are performed. Color, texture and shape feature are chosen in feature 

identification. HSV space, contrast and homogeneity of co-occurrence matrix and 

improved Hausdorff distance are extracted respectively. Histogram intersection is 
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manipulated for the color similarity measure and Euclidean distance is selected for 

texture and shape similarity measure. Then, several experiments on systems with 

individual feature were carried out, and we studied their performances according to the 

self-developed scoring result. At last, we proposed a distance metric combination scheme 

to integrate the two similarity measure methods.   

The results are the top five candidates for the input query image; that is, five 

labelled images from the image library, so that the doctors can not only know the name of 

disease but also refer to pictures of it. We choose the number five arbitrarily, simply 

because it is a reasonable number of images for doctors to consider. Results are laid out 

separately for the developmental data set and the independent test data set. Two 

evaluation systems, both the standard precision vs. recall method, and the self-developed 

scoring method are carried out. The evaluation results obtained by both methods are 

given for each class of disease. 

7.2 Conclusion 

Among all visual features, we found the color feature plays a dominating role in 

distinguishing different types of skin disease. 

The retrieved candidate images often contain the ROI images excerpted from the 

same original one when testing with the developmental data set. 

The retrieval results of “redness-general” had the best accuracy, since it is has the 

best consistency in color, texture and shape. The second best was “gangrene-necrotic”, 

which also had a good uniformity in color, texture, and shape. In Table 7-1, we perform a 

subjective evaluation of the feature consistency among each class with reference to 
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Appendix B. Non-consistency in features impedes the work of image retrieval and 

reduced back on the algorithm’s accuracy. 

Table 7-1 Subjective Evaluation of Feature Consistency  

disease Color Texture Shape 
fluid filled  Bad  Good   Good   
gangrene-necrotic  Very good  Moderate  Moderate    
pigmentation  Very bad Moderate   Moderate  
purpura - violaceous  Bad    Very bad  Bad  
raised with color change  Bad  Good    Good  
redness-general  Very good Very good Good  
ulcerated-eroded  Bad  Very bad Moderate  
warty-crusty-scabby  Bad  Bad  Moderate  

 

The score of the developmental data set is higher than that of independent test 

data set due to the pre-knowledge based selection of ROIs, the sibling effect of retrieved 

candidates and the developmental data set determined coefficients in distance metric 

combination.  

7.3 Future work 

Since the lack of contemporary research in this specific area of skin disease 

retrieval, this is preliminary research and could benefit from many improvements. These 

include the following three aspects: image collection, feature extraction and distance 

metric. 

7.3.1 Image collection 

There might be some improvements in the image collection section. If the 

illumination condition for each image is given, color balancing may be performed in the 

pre-processing step, in order to reduce the impact of mismatched color balance between 
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the test and library images. As to “pigmentation”, since it really depends on the skin color 

to define the symptom, the original skin color should be taken into account while 

performing color balancing. 

The images are recommended to be collected at the same physical scale level to 

eliminate the impact of spatial scale. 

To make those visual features more consistent in a disease group, the 

developmental data set may be divided into different sub-categories. Also, the sample 

size should be increased so as to get more precise statistical analysis results.  

Additionally, collecting images in more spectral channels (ie, hyper spectral 

imaging) could lead to additional features to improve performance. 

7.3.2 Feature extraction 

The texture feature was only based on homogeneity of selected region. The 

dispersed nature of the disease may be explored as another texture feature. One example 

of a dispersed pattern is in shown in Fig.7-1 in comparison with single pattern. 

  

Dispersed pattern Single pattern 

Image(s) © Logical Images, Inc. All rights reserved. 

Figure 7-1 Dispersed pattern and single pattern 



www.manaraa.com

77 
 

In our texture feature extraction method, only contrast and homogeneity 

properties were chosen to characterize the homogeneity property of texture. In the future, 

some other properties of GLCM, such as entropy, could be investigated in order to depict 

the texture in various aspects. 

During the shape feature extraction, we used K-means clustering to perform 

segmentation so as to extract the shape. Some other segmentation algorithms may 

generate a more accurate boundary. Also, we just tried to extract the ellipse for shape 

feature, while some other shape could be studied in future research.  

At last, if the feature identification and extraction can be associated with some 

medical knowledge of those skin diseases as a semantic feature, it could significantly 

improve the precision of the disease description. 

7.3.3 Distance metric 

In our methodology, we used Euclidean distance for the similarity measure of the 

texture and shape feature. In further study, some other distance metric, such as the 

Mahalanobis distance, could be explored.  

The distance metric combination scheme may be further investigated. Maybe 

some auto-adjusted strategy can take place of the empirical parameters in equation 5-10. 
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Appendix A: Mathematical tools 

A.1. RGB to HSV transformation (Wikipedia, 2009) 

Given a color defined by (R, G, B), where R, G, and B are between 0.0 and 1.0, 

with 0.0 being the least amount and 1.0 being the greatest amount of that color, an 

equivalent (H, S, V) color can be determined by a series of formulas.  

Let MAX be the maximum of the (R, G, B) values, and MIN be the minimum of 

those values. The formula can then be written as:  

𝑯𝑯 =

⎩
⎪
⎨

⎪
⎧

𝑮𝑮−𝑩𝑩
𝑴𝑴𝑨𝑨𝑴𝑴−𝑴𝑴𝑰𝑰𝑴𝑴

× 𝟔𝟔𝟎𝟎, 𝒑𝒑𝒇𝒇 𝑹𝑹 = 𝑴𝑴𝑨𝑨𝑴𝑴

�𝟐𝟐 + 𝑮𝑮−𝑩𝑩
𝑴𝑴𝑨𝑨𝑴𝑴−𝑴𝑴𝑰𝑰𝑴𝑴

� × 𝟔𝟔𝟎𝟎, 𝒑𝒑𝒇𝒇 𝑮𝑮 = 𝑴𝑴𝑨𝑨𝑴𝑴 

�𝟒𝟒 + 𝑮𝑮−𝑩𝑩
𝑴𝑴𝑨𝑨𝑴𝑴−𝑴𝑴𝑰𝑰𝑴𝑴

� × 𝟔𝟔𝟎𝟎, 𝒑𝒑𝒇𝒇 𝑩𝑩 = 𝑴𝑴𝑨𝑨𝑴𝑴

�     Equation A-1 

𝑺𝑺 = 𝑴𝑴𝑨𝑨𝑴𝑴−𝑴𝑴𝑰𝑰𝑴𝑴
𝑴𝑴𝑨𝑨𝑴𝑴

   Equation A-2 

𝑽𝑽 = 𝑴𝑴𝑨𝑨𝑴𝑴   Equation A-3 

The resulting values are in (H,S,V) form, where H ranges from 0.0 to 360.0, 

represents the angle in degrees around the color circle where the hue is located. S and V 

vary from 0.0 to 1.0, with 0.0 being the least amount and 1.0 being the greatest amount of 

saturation or value, respectively.  

A.2. RGB to LAB transformation (Wikipedia, 2009) 

𝑳𝑳∗ = 𝟏𝟏𝟏𝟏𝟔𝟔𝒇𝒇(𝒀𝒀 𝒀𝒀𝒑𝒑⁄ )    Equation A-4  

𝒓𝒓∗ = 𝟓𝟓𝟎𝟎𝟎𝟎[𝒇𝒇(𝑴𝑴 𝑴𝑴𝒑𝒑⁄ ) − 𝒇𝒇(𝒀𝒀 𝒀𝒀𝒑𝒑⁄ )]  Equation A-5  

𝒃𝒃∗ = 𝟓𝟓𝟎𝟎𝟎𝟎[𝒇𝒇(𝒀𝒀 𝒀𝒀𝒑𝒑⁄ ) − 𝒇𝒇(𝒁𝒁 𝒁𝒁𝒑𝒑⁄ )]  Equation A-6 

http://www.fact-archive.com/encyclopedia/Angle�
http://www.fact-archive.com/encyclopedia/Degree_%28angle%29�
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where 

𝒇𝒇(𝒓𝒓) = �
𝒓𝒓𝟏𝟏/𝟑𝟑           𝒓𝒓 > (𝟔𝟔/𝟐𝟐𝟐𝟐)𝟑𝟑

𝟏𝟏
𝟑𝟑
�𝟐𝟐𝟐𝟐
𝟔𝟔
�
𝟐𝟐
𝒓𝒓 + 𝟒𝟒

𝟐𝟐𝟐𝟐
   𝒑𝒑𝒓𝒓𝒕𝒕𝒑𝒑𝒑𝒑𝒘𝒘𝒑𝒑𝒑𝒑𝒑𝒑

�  Equation A-7 

Here Xn, Yn and Zn are the CIE XYZ values of the reference white point (the subscript 

n suggests "normalized"). 

A.3. Histogram intersection 

Histogram intersection simply uses the minimum values of corresponding bins 

between two histograms. Because of its easy implementation, it is widely used in image 

retrieval area. (Swain and Ballard, 1991; Stanley et al, 2003; Funt and Finlayson, 1995) 

Given a pair of histograms, I and M, each containing n bins, the intersection of the 

histograms is defined to be      

∑ 𝒊𝒊𝒑𝒑𝒑𝒑�𝑰𝑰𝒋𝒋,𝑴𝑴𝒋𝒋�𝒑𝒑
𝒋𝒋=𝟏𝟏     Equation A-8                             

The result of the intersection of a model histogram with an image histogram is the 

number of pixels from the model that have corresponding pixels of the same color in the 

image. To obtain a fractional match value between 0 and 1 the intersection is normalized 

by the number of pixels in the model histogram. The match value is then    

𝑯𝑯(𝑰𝑰,𝑴𝑴) =
∑ 𝒊𝒊𝒑𝒑𝒑𝒑�𝑰𝑰𝒋𝒋,𝑴𝑴𝒋𝒋�𝒑𝒑
𝒋𝒋=𝟏𝟏

∑ 𝑴𝑴𝒋𝒋
𝒑𝒑
𝒋𝒋=𝟏𝟏

   Equation A-9                  
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Figure A-1 Illustration of histogram matching scheme 

As an example, consider two 4×4 images with 4 gray-level values: 

1 3 3 2 
0 0 1 1 
3 3 2 1 
3 2 0 0 

Image I 

0 0 1 2 
3 2 2 2 
3 3 1 0 
0 0 1 1 
Image M 

The histogram of this is: 

 

 

 

 

  

             0     1     2      3 

Figure A-2 Histogram of Image I and Image M 

The normalized histogram intersection between the two images is: 

4 

3 

2 

1 

5 
Image I 

Image M 
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𝐻𝐻(𝐼𝐼,𝐺𝐺) =
4 + 4 + 3 + 3
5 + 4 + 4 + 3

= 0.875 

A.4. Gray level co-occurrence matrix 

Spatial gray level co-occurrence estimates image properties related to second-

order statistics. Haralick, 1973 suggested the use of gray level co-occurrence matrices 

(GLCM) which have become one of the most well-known and widely used texture 

features. The gray level co-occurrence matrix for a displacement vector is defined as 

follows. The entry (𝑠𝑠, 𝑗𝑗) is the number of occurrences of the pair of gray levels 𝑠𝑠 and 𝑗𝑗 

which are a distance 𝑑𝑑 apart. Formally, it is given as 

𝑷𝑷𝒓𝒓(𝒑𝒑, 𝒋𝒋) =  ���(𝒑𝒑, 𝒑𝒑), (𝒓𝒓,𝒓𝒓)�: 𝑰𝑰(𝒑𝒑, 𝒑𝒑) = 𝒑𝒑, 𝑰𝑰(𝒓𝒓,𝒓𝒓) = 𝒋𝒋��  Equation A-10 

Where (𝑟𝑟, 𝑠𝑠), (𝑡𝑡, 𝑣𝑣)𝜖𝜖𝜖𝜖 × 𝜖𝜖, (𝑡𝑡, 𝑣𝑣) =  (𝑟𝑟 + 𝑑𝑑𝑚𝑚, 𝑠𝑠 + 𝑑𝑑𝑑𝑑) and |. | is the cardinality of 

a set. (Chen, 1998) 

As an example, consider the following 4×4 image containing 3 different gray 

values:  

1 1 1 0 
1 1 0 0 
0 0 2 2 
0 0 2 2 

 

The 3×3 gray level co-occurrence matrix for a displacement vector of d = (1, 0) is 

given as follows:  

𝑃𝑃𝑑𝑑 =  �
3 0 2
2 3 0
0 0 2

� 

Here the entry (0, 0) of 𝑃𝑃𝑑𝑑  is 3 because there are four pixel pairs of (0, 0) that are 

off-set by (1, 0) amount. Examples of 𝑃𝑃𝑑𝑑  for other displacement vectors are given below: 
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d = (0, 1) 
𝑃𝑃𝑑𝑑 =  �

3 2 0
0 3 0
2 0 2

� 

d = (1, 1) 
𝑃𝑃𝑑𝑑 =  �

3 1 1
1 2 0
1 0 1

� 

 

The co-occurrence matrix reveals certain properties about the spatial distribution 

of the gray levels in the texture image. Haralick, K. 1973 has proposed a number of 

useful texture features that can be computed from the co-occurrence matrix. Table A-1 

lists some of these features. 

Here 𝜇𝜇𝑚𝑚  and 𝜇𝜇𝑑𝑑  are the means and 𝜎𝜎𝑚𝑚  and 𝜎𝜎𝑑𝑑  are the standard deviation of 𝑃𝑃𝑑𝑑(𝑚𝑚) 

and 𝑃𝑃𝑑𝑑(𝑑𝑑), respectively, where 𝑃𝑃𝑑𝑑(𝑚𝑚) =  ∑ 𝑃𝑃𝑑𝑑(𝑚𝑚, 𝑗𝑗)𝑗𝑗  and 𝑃𝑃𝑑𝑑(𝑑𝑑) =  ∑ 𝑃𝑃𝑑𝑑(𝑠𝑠,𝑑𝑑)𝑠𝑠 . 

Table A-1 Texture Features Derived from Co-occurrence Matrix 

 

Contrast is a measure of the local variations present in an image. If there is a large 

amount of variation in an image, the 𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗) will be concentrated away from the main 

diagonal and contrast will be high. It has a range between[0 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) − 1)2]. 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) is the number of gray levels. 
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Homogeneity measures the closeness of the distribution of elements in the GLCM 

to the GLCM diagonal. A homogeneous image will result in a co-occurrence matrix with 

entries having both high and low𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗) values. If the range of gray levels is small, the 

𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗) will tend to be clustered around the main diagonal. A heterogeneous image will 

result in an even spread of 𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗). It has a range of [0 1]. 

Entropy is a measure of information content. It measures the randomness of the 

intensity distribution. Such a matrix corresponds to an image in which there are no 

preferred gray level pairs for the distance vector d. Entropy is highest when all entries in 

𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗) are of similar magnitude, and small when the entries in 𝑃𝑃𝑑𝑑(𝑠𝑠, 𝑗𝑗) are unequal. 

Energy is the sum of squared values in the GLCM. It has a range of [0 1]. 

A.5. K-means clustering 

K-means (MacQueen, 1967) is one of the simplest unsupervised learning 

algorithms that solve the well known clustering problem. The procedure follows a simple 

way to classify a data set by a certain number of clusters (assume K clusters). The main 

idea is to define K centroids, one for each cluster. The better choice is to place the 

centroids as much as possible far away from each other. Then, take each point belonging 

to a given data set and associate it to the nearest centroid. When performing this to all the 

points, the first step is completed. At this point we need to re-calculate K new centroids 

of the clusters resulting from the previous step. After we generate these K new centroids, 

a new binding has to be done between the same data set points and the nearest new 

centroid. As a result of this loop, we notice that the K centroids change their location step 

by step until no more changes are done. Finally, this algorithm comes to minimize an 

objective function, in this case a squared error function. The objective function is   
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𝑱𝑱 = ∑ ∑ �𝒙𝒙𝒑𝒑
(𝒋𝒋) − 𝒑𝒑𝒋𝒋�

𝟐𝟐
𝒑𝒑
𝒑𝒑=𝟏𝟏

𝒌𝒌
𝒋𝒋=𝟏𝟏   Equation A-11 

where �𝑚𝑚𝑠𝑠
(𝑗𝑗 ) − 𝑐𝑐𝑗𝑗�

2
is a chosen distance measure between a data point 𝑚𝑚𝑠𝑠

(𝑗𝑗 ) and the 

cluster centre 𝑐𝑐𝑗𝑗 , and is an indicator of the distance of the n data points from their 

respective cluster centers. 

A.6. Hausdorff distance 

Hausdorff distance is the “maximum distance of a set to the nearest point in the 

other set” (Rote, G. 1991). Given two finite point sets 𝐴𝐴 =  �𝑟𝑟1, … ,𝑟𝑟𝑝𝑝� and 𝐵𝐵 =

 �𝑏𝑏1, … , 𝑏𝑏𝑝𝑝�, the Hausdorff distance is defined as  

𝑯𝑯(𝑨𝑨,𝑩𝑩) = 𝒊𝒊𝒓𝒓𝒙𝒙�𝒕𝒕(𝑨𝑨,𝑩𝑩),𝒕𝒕(𝑩𝑩,𝑨𝑨)�  Equation A-12 

Where 

𝒕𝒕(𝑨𝑨,𝑩𝑩) = 𝐦𝐦𝐦𝐦𝐦𝐦𝒓𝒓∈𝑨𝑨𝐦𝐦𝐦𝐦𝐦𝐦𝒃𝒃∈𝑩𝑩‖𝒓𝒓 − 𝒃𝒃‖  Equation A-13 

‖. ‖ is some underlying norm on the points of A and B, usually the Euclidean 

norm. 

The function ℎ(𝐴𝐴,𝐵𝐵) is the directed Hausdorff distance from A to B. It chooses 

the point 𝑟𝑟𝜖𝜖𝐴𝐴 that is farthest from any point of B and measures the distance from 𝑟𝑟 to its 

nearest neighbor in B. 

The Hausdorff distance 𝐻𝐻(𝐴𝐴,𝐵𝐵) is the maximum of ℎ(𝐴𝐴,𝐵𝐵) and ℎ(𝐵𝐵,𝐴𝐴). Thus, it 

measures the degree of mismatch between two sets by measuring the distance of the point 

of A that is farthest from any point of B and vice versa. Intuitively, if the Hausdorff 

distance is 𝑑𝑑, then every point of A must be within a distance 𝑑𝑑 of some point of B and 
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vice versa. Thus, the notion of resemblance encoded by this distance is that each member 

of A be near some member of B and vice versa. (Huttenlocher et al, 1993). 

An Improved Hausdorff distance is proposed by Dubuisson and Jain, 1994: 

𝒕𝒕(𝑨𝑨,𝑩𝑩) = 𝟏𝟏
𝑴𝑴𝒓𝒓
∑ 𝐦𝐦𝐦𝐦𝐦𝐦𝒃𝒃∈𝑩𝑩‖𝒓𝒓 − 𝒃𝒃‖𝒓𝒓∈𝑨𝑨    Equation A-14 

𝑯𝑯(𝑨𝑨,𝑩𝑩) = 𝒊𝒊𝒓𝒓𝒙𝒙�𝒕𝒕(𝑨𝑨,𝑩𝑩),𝒕𝒕(𝑩𝑩,𝑨𝑨)�   Equation A-15 

The Improved Hausdorff distance is best for matching two objects based on their 

edge points among the class of distance measures based on the Hausdorff distance. It has 

the following desirable properties: (1) its value increases monotonically as the amount of 

difference between the two sets of edge points increases, (2) it is robust to outlier points 

that might result from segmentation errors.  
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Appendix B: Data set 

B.1. Developmental data set  

    

    

    

    

    
Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-1 Fluidfilled   
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-2 Gangrene-necrotic  

    

    

    

    
Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-3 Pigmentation   
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-4 Purpura-violaceous  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-5 Raised with color changes  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-6 Redness – general  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-7 Ulcerated-eroded  
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-8 Warty-crusty-scabby  
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B.2. Independent test data set 

    

   
 

    

    

    

    

    
Image(s) © Logical Images, Inc. All rights reserved. 
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Image(s) © Logical Images, Inc. All rights reserved. 
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Image(s) © Logical Images, Inc. All rights reserved. 

Figure B-9 Independent data set 
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